
Basic Enzo Algorithms
John Wise (Georgia Tech)

Einstein Workshop – 05 April 2012

Introducing

• Block-structured AMR + N-body

• Proper or comoving coordinates

• N-body: Adaptive particle-mesh solver

• (Magneto-)Hydrodynamics:

• High-resolution shock capturing scheme

• OR Finite differencing

• Chemical network solver (H, He, H2, HD)

• Star & BH formation and feedback

• Radiative transfer

• Adaptive (angular) ray tracing

• OR Flux-limited diffusion

enzo-project.org

Topics

I.  Hydrodynamics
  PPM

  ZEUS

II.  AMR
  Timestepping

  Projection

  Flux correction

III.  Gravity
  Root grid

  Subgrids

IV.  Particles

V.  Chemistry & Cooling
  Multispecies

I. Hydrodynamics

Fluid Equations - grid::SolveHydroEquations	

Mass conservation

Momentum
conservation

Energy conservation

Ideal Gas EOS

Self-gravity

Field names: Density, Pressure, TotalEnergy, InternalEnergy, 	
	 	 Velocity1, Velocity2, Velocity3	

grid class: accessing the fields – grid.h	

  In grid class:
  BaryonFields[] – array of pointers to each field

  Fortran (row-major) ordering within each field

  GridRank – dimensionality of problem

  GridDimensions[] – dimensions of this grid

  GridStartIndex[] – Index of first “active” cell (usually 3)
  First (and last) three cells are ghost or boundary zones

int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);	
int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);	

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {	
 for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {	
 for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {	
 BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];	
 }	
 }	
} 	

Enzo file name convention

  General C++ routines:

  Routine name: EvolveLevel(…)

  In file: EvolveLevel.C

  One routine per file!

  grid methods:

  Routine name: grid::MyName(…)	

  In file: Grid_MyName.C	

  Fortran routines:

  Routine name: intvar(…)	

  In file: intvar.src	

  .src is used because routine is fed first through C preprocessor

PPM Solver: grid::SolvePPM_DE

  HydroMethod = 0	

  PPM: e.g. mass conservation equation

  Flux conservative form:

  In discrete form:

  How to compute mass flux?

  Note: multi-dimensions handled by operating splitting
  grid::xEulerSweep.C, grid::yEulerSweep.C,
grid::zEulerSweep.C	

Mass flux across j+1/2 boundary

Grid::SolvePPM_DE
 // Update in x-direction
for (k = 0; k < GridDimension[2]; k++) {
 if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes,
 GridGlobalStart, CellWidthTemp, GravityOn,
 NumberOfColours, colnum) == FAIL) {
 fprintf(stderr, "Error in xEulerSweep. k = %d\n", k);
 ENZO_FAIL("");
 }
 } // ENDFOR k

 // Update in y-direction
 for (i = 0; i < GridDimension[0]; i++) {
 if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes,
 GridGlobalStart, CellWidthTemp, GravityOn,
 NumberOfColours, colnum) == FAIL) {
 fprintf(stderr, "Error in yEulerSweep. i = %d\n", i);
 ENZO_FAIL("");
 }
 } // ENDFOR i

PPM: 1D hydro update: grid::xEulerSweep	

  Copy 2D slice out of cube

  Compute pressure on slice (pgas2d)

  Calculate diffusion/steepening coefficients (calcdiss)

  Compute Left and Right states on each cell edge (inteuler)

  Solve Reimann problem at each cell edge (twoshock)

  Compute fluxes of conserved quantities at each cell edge
(euler)

  Save fluxes for future use

  Return slice to cube

PPM: reconstruction: inteuler	

  Piecewise parabolic representation:

  Coefficients (Δq and q6) computed with mean q and qL, qR.

  For smooth flow (like shown above), this is fine, but can cause a
problem for discontinuities (e.g. shocks)

  qL, qR are modified to ensure monotonicity (no new extrema)

qR

qL

q

PLM: reconstruction

• Piecewise linear method

• More diffusive reconstruction scheme, but
more stable.

PPM: Godunov method: twoshock

  To compute flux at cell boundary, take two initial constant
states and then solve Riemann problem at interface

  Given solution, can compute flux across boundary

  Advantage: correctly satisfies jump conditions for shock

rarefaction wave

contact discontinuity

shock

left state right state

PPM: Godunov method: inteuler, twoshock	

  For PPM, compute left and right states by averaging over
characteristic region (causal region for time step Δt)

  Average left and right regions become constant regions to
be feed into Riemann solver (twoshock).

Other Riemann solvers

• HLL: (Harten-Lax-Leer)

• HLLC: HLL but considering the contact
wave

PPM: Eulerian corrections: euler	

  Eulerian case more complicated because cell edge is fixed.

  Characteristic region for fixed cell more complicated:

  Note that solution is not known ahead of time so two-step
procedure is used (see Collela & Woodward 1984 for details)

SUBSONIC CASE SUPERSONIC CASE

Difficulty with very high Mach flows

  PPM is flux conservative so natural variables are mass,
momentum, total energy

  Internal energy (e) computed from total energy (E):

  Problem can arise in very high Mach flows when E >> e

  e is difference between two large numbers

  Not important for flow dynamics since p is negligible

  But can cause problems if we want accurate temperatures
since T α e

Dual Energy Formalism:
grid::ComputePresureDualEnergyFormalism

  Solution: Also evolve equation for internal energy:

  Select energy to use depending on ratio e/E:

  Select with DualEnergyFormalism = 1	

  Use when v/cs > ~20

  Q: Why not just use e?

  A: Equation for e is not in conservative form (source term).

  Source term in internal energy equation causes diffusion

Zeus Solver: grid::ZeusSolver	

  Traditional finite difference method

  Artificial viscosity (see Stone & Norman 1992)

  HydroMethod = 2	

  Source step: ZeusSource	

  Pressure (and gravity) update:

  Artificial viscosity:

  Compression heating:

Zeus Solver: grid::ZeusSolver

  Transport step: Zeus_xTransport	

  Note conservative form (transport part preserves mass)

  Note vj+1 is face-centered so is really at cell-edge, but density
needs to be interpolated. Zeus uses an upwinded van Leer
(linear) interpolation:

  Similarly for momentum and energy (and y and z)

  Zeus_yTransport, Zeus_zTransport

e.g.

Zeus Solver: grid::ZeusSolver

  PPM is more accurate, slower but Zeus is faster and more
robust.

  PPM often fails (“dnu < 0” error) when fast cooling generates
large density gradients.

  Try out new hydro solvers in Enzo 2.0!

  Implementation differences with PPM:

  Internal energy equation only

  In code, TotalEnergy field is really internal energy (ugh!)

  Velocities are face-centered

  BaryonField[Vel1Num][GINDEX(i,j,k)] really “lives” at i-1/2	

II. Block Structured AMR

AMR: EvolveHierarchy	

  Root grid NxNxN, so Δx = DomainWidth/N

  Level L defined so Δx = DomainWidth/(N2L)

  Starting with level 0, grid advanced by Δt

  Main loop of EvolveHierarchy looks (roughly) like this:

  EvolveLevel does the heavy lifting

Time Step: grid::ComputeTimeStep	

  Timestep on level L is minimum of constraints over all
level L grids:

  + others (e.g. MHD, FLD, etc.)

CourantSafetyFactor	

ParticleCourantSafetyFactor	

MaximumExpansionFactor	

AMR: EvolveLevel	

  Levels advanced as follows:

  Timesteps may not be integer ratios

  (Diagram assumes Courant condition dominates and sound speed is
constant so: dt α Δx)

  This algorithm is defined in EvolveLevel	

Advance grids on level: EvolveLevel	

  The logic of EvolveLevel is given (roughly) as:

Already talked about this.

Next, we’ll talk about these

recursive

BC’s: SetBoundaryConditions	

  Setting “ghost” zones around outside of domain
  grid::SetExternalBoundaryValues	

  Choices: reflecting, outflow, inflow, periodic	

  Only applied to level 0 grids (except periodic)

  Otherwise, two step procedure:

  Interpolate ghost (boundary) zones from level L-1 grid

  grid::InterpolateBoundaryFromParent

  Linear interpolation in time (OldBaryonFields)

  Spatial interpolation controlled by InterpolationMethod	

  SecondOrderA recommended, default (3D, linear in space, monotonic)

  Copy ghost zones from sibling grids

  grid::CheckForOverlap and grid::CopyZonesFromGrid	

Projection: grid::ProjectSolutionToParentGrid	

  Structured AMR produces redundancy:

  coarse and fine grids cover same region

  Need to restore consistency

  Correct coarse cells once grids have all reach the same
time:

Flux Correction:
grid::CorrectForRefinedFluxes	

  Mismatch of fluxes occurs around boundary of fine grids

  Coarse cell just outside boundary used coarse fluxes but
coarse cell inside used fine fluxes

  Both fine and coarse fluxes saved

 from hydro solver

Uncorrected
coarse value

Coarse flux
across boundary

Sum of fine fluxes
Over 4 (in 3D)

abutting fine cells

Rebuilding the Hierarchy:
RebuildHierarchy	

  Need to check for cells needing more refinement
Check for new grids on
level 1 (and below)

Check for new grids on
Level 2 (and below)

Check for new grids on
Level 3 (and below)

Refinement Criteria – grid::SetFlaggingField	

  Many ways to flag cells for refinement

  CellFlaggingMethod = 	

  Then rectangular grids must be chosen to cover all
flagged cells with minimum “waste”

  Done with machine vision technique

  Looks for edges (inflection points in number of flagged cells)

  ProtoSubgrid class

III. Gravity

Self-Gravity (SelfGravity = 1)

  Solve Poisson equation
  PrepareDensityField	

  BaryonField[Density] copied to GravitatingMassField	

  Particle mass is deposited in 8 nearest cells (CIC)

  Particle position advanced by ½ step
  DepositParticleMassField	

  Root grid (level 0):

  Potential solved with FFT

  ComputePotentialFieldLevelZero	

  Potential differenced to get acceleration
  grid::ComputeAccelerationField	

Self-Gravity

  Subgrids:

  Potential interpolated to boundary from parent
  Grid::PreparePotentialField	

  Each subgrid then solves Poisson equation using multigrid
  Grid::SolveForPotential	

  Note: this has two issues:

  Interpolation errors on boundary can propagate to fine levels

  Generally only an issue for steep potentials (point mass)

  Ameliorated by having 6 ghost zones for gravity grid

  Subgrids can have inconsistent potential gradients across boundary

  Improved by copying new boundary conditions from sibilings and resolving
the Poisson equation (PotentialIterations = 4 by default)

  More accurate methods in development

Other Gravitational sources –

grid::ComputeAccelerationFieldExternal

  Can also add fixed potential:

  UniformGravity – constant field

  PointSourceGravity – single point source

  ExternalGravity – NFW profile

IV. Particles

N-body dynamics

  Particles contribute mass to GravitatingMassField	

  Particles accelerated by AccelerationField	

  Interpolated from grid (from 8 nearest cells)

  Particles advanced using leapfrog

  grid::ComputeAccelerations	

  Particles stored in the locally most-refined grid
  ParticlePosition, ParticleVelocity, ParticleMass	

  Tracer particles (massless) also available

IV. Chemistry and Cooling

Chemistry

  Follows multiple species and solve rate equations

  MultiSpecies = 1: H, H+, He, He+, He++, e-

  MultiSpecies = 2: adds H2, H2+, H-

  MultiSpecies = 3: adds D, D+ and HD
  grid:SolveRateEquations	

  (or grid::SolveRateAndCoolEquations if RadiativeCooling > 0)

  Rate equations solved using backwards differencing
formula (BDF) with sub-cycles to prevent > 10% changes

  Works well as long as chemical timescale not really short

Radiative Cooling –
grid::SolveRadiativeCooling	

  RadiativeCooling = 1	

  Two modes:
  MultiSpecies = 0	

  Equilibrium cooling table (reads file cool_rates.in)

  Sub-cycles so that De < 10% in one cooling step
  MultiSpecies > 1	

  Computes cooling rate self-consistently from tracked-species

  MetalCooling = 1: adds metal cooling from Glover & Jappsen (2007)

  MetalCooling = 2: adds metal cooling from Raymond-Smith code

  MetalCooling = 3: Cloudy Cooling table (Smith, Sigurdsson & Abel
2008)

  RadiationFieldType > 0
  Add predefined radiative heating and ionization

