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Introducing

• Block-structured AMR + N-body

• Proper or comoving coordinates

• N-body: Adaptive particle-mesh solver

• (Magneto-)Hydrodynamics: 

• High-resolution shock capturing scheme

• OR Finite differencing

• Chemical network solver (H, He, H2, HD)

• Star & BH formation and feedback

• Radiative transfer

• Adaptive (angular) ray tracing

• OR Flux-limited diffusion

enzo-project.org



Topics 

I.  Hydrodynamics 
  PPM 

  ZEUS 

II.  AMR 
  Timestepping 

  Projection 

  Flux correction 

III.  Gravity 
  Root grid 

  Subgrids 

IV.  Particles 

V.  Chemistry & Cooling 
  Multispecies 



I. Hydrodynamics 



Fluid Equations - grid::SolveHydroEquations	

Mass conservation 

Momentum 
conservation 

Energy conservation 

Ideal Gas EOS 

Self-gravity 

Field names: Density, Pressure, TotalEnergy, InternalEnergy, 	
	 	   Velocity1, Velocity2, Velocity3	



grid class: accessing the fields – grid.h	

  In grid class: 
  BaryonFields[] – array of pointers to each field 

  Fortran (row-major) ordering within each field 

  GridRank – dimensionality of problem 

  GridDimensions[] – dimensions of this grid 

  GridStartIndex[] – Index of first “active” cell (usually 3) 
  First (and last) three cells are ghost or boundary zones 

int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);	
int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);	

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {	
 for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {	
  for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {	
   BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];	
  }	
 }	
} 	



Enzo file name convention 

  General C++ routines: 

  Routine name: EvolveLevel(…) 

  In file: EvolveLevel.C 

  One routine per file! 

  grid methods: 

  Routine name: grid::MyName(…)	

  In file: Grid_MyName.C	

  Fortran routines: 

  Routine name: intvar(…)	

  In file: intvar.src	

  .src is used because routine is fed first through C preprocessor  



PPM Solver: grid::SolvePPM_DE 

  HydroMethod = 0	

  PPM: e.g. mass conservation equation 

  Flux conservative form: 

  In discrete form: 

  How to compute mass flux? 

  Note: multi-dimensions handled by operating splitting 
  grid::xEulerSweep.C, grid::yEulerSweep.C, 
grid::zEulerSweep.C	

Mass flux across j+1/2 boundary 



Grid::SolvePPM_DE 
 // Update in x-direction 
for (k = 0; k < GridDimension[2]; k++) { 
     if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes, 
                              GridGlobalStart, CellWidthTemp, GravityOn, 
                              NumberOfColours, colnum) == FAIL) { 
          fprintf(stderr, "Error in xEulerSweep.  k = %d\n", k); 
          ENZO_FAIL(""); 
     } 
 } // ENDFOR k 

 // Update in y-direction 
 for (i = 0; i < GridDimension[0]; i++) { 
      if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes, 
                              GridGlobalStart, CellWidthTemp, GravityOn, 
                              NumberOfColours, colnum) == FAIL) { 
       fprintf(stderr, "Error in yEulerSweep.  i = %d\n", i); 
       ENZO_FAIL(""); 
     } 
   } // ENDFOR i 



PPM: 1D hydro update: grid::xEulerSweep	

  Copy 2D slice out of cube 

  Compute pressure on slice (pgas2d) 

  Calculate diffusion/steepening coefficients (calcdiss) 

  Compute Left and Right states on each cell edge (inteuler) 

  Solve Reimann problem at each cell edge (twoshock) 

  Compute fluxes of conserved quantities at each cell edge 
(euler) 

  Save fluxes for future use 

  Return slice to cube 



PPM: reconstruction: inteuler	

  Piecewise parabolic representation: 

  Coefficients (Δq and q6) computed with mean q and qL, qR. 

  For smooth flow (like shown above), this is fine, but can cause a 
problem for discontinuities (e.g. shocks) 

  qL, qR are modified to ensure monotonicity (no new extrema) 

qR 

qL 

q 



PLM: reconstruction

• Piecewise linear method

• More diffusive reconstruction scheme, but 
more stable.



PPM: Godunov method: twoshock 

  To compute flux at cell boundary, take two initial constant 
states and then solve Riemann problem at interface 

  Given solution, can compute flux across boundary 

  Advantage: correctly satisfies jump conditions for shock 

rarefaction wave 

contact discontinuity 

shock 

left state right state 



PPM: Godunov method: inteuler, twoshock	

  For PPM, compute left and right states by averaging over 
characteristic region (causal region for time step Δt) 

  Average left and right regions become constant regions to 
be feed into Riemann solver (twoshock). 



Other Riemann solvers

• HLL: (Harten-Lax-Leer)

• HLLC: HLL but considering the contact 
wave



PPM: Eulerian corrections: euler	

  Eulerian case more complicated because cell edge is fixed.   

  Characteristic region for fixed cell more complicated: 

  Note that solution is not known ahead of time so two-step 
procedure is used (see Collela & Woodward 1984 for details)  

SUBSONIC CASE SUPERSONIC CASE 



Difficulty with very high Mach flows 

  PPM is flux conservative so natural variables are mass, 
momentum, total energy 

  Internal energy (e) computed from total energy (E): 

  Problem can arise in very high Mach flows when E >> e 

  e is difference between two large numbers 

  Not important for flow dynamics since p is negligible 

  But can cause problems if we want accurate temperatures 
since T α e 



Dual Energy Formalism: 
grid::ComputePresureDualEnergyFormalism 

  Solution:  Also evolve equation for internal energy: 

  Select energy to use depending on ratio e/E: 

  Select with DualEnergyFormalism = 1	

  Use when v/cs > ~20 

  Q: Why not just use e? 

  A: Equation for e is not in conservative form (source term). 

  Source term in internal energy equation causes diffusion 



Zeus Solver: grid::ZeusSolver	

  Traditional finite difference method  

  Artificial viscosity (see Stone & Norman 1992) 

  HydroMethod = 2	

  Source step: ZeusSource	

  Pressure (and gravity) update: 

  Artificial viscosity: 

  Compression heating: 



Zeus Solver: grid::ZeusSolver 

  Transport step: Zeus_xTransport	

  Note conservative form (transport part preserves mass) 

  Note vj+1 is face-centered so is really at cell-edge, but density 
needs to be interpolated.  Zeus uses an upwinded van Leer 
(linear) interpolation:   

  Similarly for momentum and energy (and y and z) 

  Zeus_yTransport, Zeus_zTransport 

e.g. 



Zeus Solver: grid::ZeusSolver 

  PPM is more accurate, slower but Zeus is faster and more 
robust. 

  PPM often fails (“dnu < 0” error) when fast cooling generates 
large density gradients. 

  Try out new hydro solvers in Enzo 2.0! 

  Implementation differences with PPM: 

  Internal energy equation only 

  In code, TotalEnergy field is really internal energy (ugh!) 

  Velocities are face-centered 

  BaryonField[Vel1Num][GINDEX(i,j,k)] really “lives” at i-1/2	



II. Block Structured AMR 



AMR: EvolveHierarchy	

  Root grid NxNxN, so Δx = DomainWidth/N 

  Level L defined so Δx = DomainWidth/(N2L) 

  Starting with level 0, grid advanced by Δt 

  Main loop of EvolveHierarchy looks (roughly) like this: 

  EvolveLevel does the heavy lifting 



Time Step: grid::ComputeTimeStep	

  Timestep on level L is minimum of constraints over all 
level L grids: 

  + others (e.g. MHD, FLD, etc.) 

CourantSafetyFactor	

ParticleCourantSafetyFactor	

MaximumExpansionFactor	



AMR: EvolveLevel	

  Levels advanced as follows: 

  Timesteps may not be integer ratios 

  (Diagram assumes Courant condition dominates and sound speed  is 
constant so: dt α Δx) 

  This algorithm is defined in EvolveLevel	



Advance grids on level: EvolveLevel	

  The logic of EvolveLevel is given (roughly) as: 

Already talked about this. 

Next, we’ll talk about these 

recursive 



BC’s: SetBoundaryConditions	

  Setting “ghost” zones around outside of domain 
  grid::SetExternalBoundaryValues	

  Choices: reflecting, outflow, inflow, periodic	

  Only applied to level 0 grids (except periodic) 

  Otherwise, two step procedure: 

  Interpolate ghost (boundary) zones from level L-1 grid 

  grid::InterpolateBoundaryFromParent 

  Linear interpolation in time (OldBaryonFields) 

  Spatial interpolation controlled by InterpolationMethod	

  SecondOrderA recommended, default (3D, linear in space, monotonic) 

  Copy ghost zones from sibling grids 

  grid::CheckForOverlap and grid::CopyZonesFromGrid	



Projection: grid::ProjectSolutionToParentGrid	

  Structured AMR produces redundancy:  

  coarse and fine grids cover same region 

  Need to restore consistency 

  Correct coarse cells once grids have all reach the same 
time: 



Flux Correction: 
grid::CorrectForRefinedFluxes	

  Mismatch of fluxes occurs around boundary of fine grids 

  Coarse cell just outside boundary used coarse fluxes but 
coarse cell inside used fine fluxes 

  Both fine and coarse fluxes saved 

   from hydro solver 

Uncorrected 
coarse value 

Coarse flux 
across boundary 

Sum of fine fluxes 
Over 4 (in 3D) 

abutting fine cells  



Rebuilding the Hierarchy: 
RebuildHierarchy	

  Need to check for cells needing more refinement 
Check for new grids on 
level 1 (and below) 

Check for new grids on 
Level 2 (and below) 

Check for new grids on 
Level 3 (and below) 



Refinement Criteria – grid::SetFlaggingField	

  Many ways to flag cells for refinement 

  CellFlaggingMethod = 	

  Then rectangular grids must be chosen to cover all 
flagged cells with minimum “waste” 

  Done with machine vision technique 

  Looks for edges (inflection points in number of flagged cells) 

  ProtoSubgrid class 



III. Gravity 



Self-Gravity (SelfGravity = 1) 

  Solve Poisson equation 
  PrepareDensityField	

  BaryonField[Density] copied to GravitatingMassField	

  Particle mass is deposited in 8 nearest cells (CIC) 

  Particle position advanced by ½ step 
  DepositParticleMassField	

  Root grid (level 0): 

  Potential solved with FFT 

  ComputePotentialFieldLevelZero	

  Potential differenced to get acceleration 
  grid::ComputeAccelerationField	



Self-Gravity 

  Subgrids: 

  Potential interpolated to boundary from parent 
  Grid::PreparePotentialField	

  Each subgrid then solves Poisson equation using multigrid 
  Grid::SolveForPotential	

  Note: this has two issues: 

  Interpolation errors on boundary can propagate to fine levels 

  Generally only an issue for steep potentials (point mass) 

  Ameliorated by having 6 ghost zones for gravity grid 

  Subgrids can have inconsistent potential gradients across boundary 

  Improved by copying new boundary conditions from sibilings and resolving 
the Poisson equation (PotentialIterations = 4 by default) 

  More accurate methods in development 



Other Gravitational sources – 

grid::ComputeAccelerationFieldExternal 

  Can also add fixed potential: 

  UniformGravity – constant field 

  PointSourceGravity – single point source 

  ExternalGravity – NFW profile 



IV. Particles 



N-body dynamics 

  Particles contribute mass to GravitatingMassField	

  Particles accelerated by AccelerationField	

  Interpolated from grid (from 8 nearest cells) 

  Particles advanced using leapfrog 

  grid::ComputeAccelerations	

  Particles stored in the locally most-refined grid 
  ParticlePosition, ParticleVelocity, ParticleMass	

  Tracer particles (massless) also available 



IV. Chemistry and Cooling 



Chemistry 

  Follows multiple species and solve rate equations 

  MultiSpecies = 1: H, H+, He, He+, He++, e- 

  MultiSpecies = 2: adds H2, H2+, H- 

  MultiSpecies = 3: adds D, D+ and HD 
  grid:SolveRateEquations	

  (or grid::SolveRateAndCoolEquations if RadiativeCooling > 0) 

  Rate equations solved using backwards differencing 
formula (BDF) with sub-cycles to prevent > 10% changes 

  Works well as long as chemical timescale not really short 



Radiative Cooling – 
grid::SolveRadiativeCooling	

  RadiativeCooling = 1	

  Two modes: 
  MultiSpecies = 0	

  Equilibrium cooling table (reads file cool_rates.in) 

  Sub-cycles so that De < 10% in one cooling step 
  MultiSpecies > 1	

  Computes cooling rate self-consistently from tracked-species 

  MetalCooling = 1: adds metal cooling from Glover & Jappsen (2007) 

  MetalCooling = 2: adds metal cooling from Raymond-Smith code 

  MetalCooling = 3: Cloudy Cooling table (Smith, Sigurdsson & Abel 
2008) 

  RadiationFieldType > 0 
  Add predefined radiative heating and ionization 


