
Basic Enzo Algorithms
John Wise (Georgia Tech)

Einstein Workshop – 05 April 2012



Introducing

• Block-structured AMR + N-body

• Proper or comoving coordinates

• N-body: Adaptive particle-mesh solver

• (Magneto-)Hydrodynamics: 

• High-resolution shock capturing scheme

• OR Finite differencing

• Chemical network solver (H, He, H2, HD)

• Star & BH formation and feedback

• Radiative transfer

• Adaptive (angular) ray tracing

• OR Flux-limited diffusion

enzo-project.org



Topics 

I.  Hydrodynamics 
  PPM 

  ZEUS 

II.  AMR 
  Timestepping 

  Projection 

  Flux correction 

III.  Gravity 
  Root grid 

  Subgrids 

IV.  Particles 

V.  Chemistry & Cooling 
  Multispecies 



I. Hydrodynamics 



Fluid Equations - grid::SolveHydroEquations	

Mass conservation 

Momentum 
conservation 

Energy conservation 

Ideal Gas EOS 

Self-gravity 

Field names: Density, Pressure, TotalEnergy, InternalEnergy, 	
	 	   Velocity1, Velocity2, Velocity3	



grid class: accessing the fields – grid.h	

  In grid class: 
  BaryonFields[] – array of pointers to each field 

  Fortran (row-major) ordering within each field 

  GridRank – dimensionality of problem 

  GridDimensions[] – dimensions of this grid 

  GridStartIndex[] – Index of first “active” cell (usually 3) 
  First (and last) three cells are ghost or boundary zones 

int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);	
int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);	

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {	
 for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {	
  for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {	
   BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];	
  }	
 }	
} 	



Enzo file name convention 

  General C++ routines: 

  Routine name: EvolveLevel(…) 

  In file: EvolveLevel.C 

  One routine per file! 

  grid methods: 

  Routine name: grid::MyName(…)	

  In file: Grid_MyName.C	

  Fortran routines: 

  Routine name: intvar(…)	

  In file: intvar.src	

  .src is used because routine is fed first through C preprocessor  



PPM Solver: grid::SolvePPM_DE 

  HydroMethod = 0	

  PPM: e.g. mass conservation equation 

  Flux conservative form: 

  In discrete form: 

  How to compute mass flux? 

  Note: multi-dimensions handled by operating splitting 
  grid::xEulerSweep.C, grid::yEulerSweep.C, 
grid::zEulerSweep.C	

Mass flux across j+1/2 boundary 



Grid::SolvePPM_DE 
 // Update in x-direction 
for (k = 0; k < GridDimension[2]; k++) { 
     if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes, 
                              GridGlobalStart, CellWidthTemp, GravityOn, 
                              NumberOfColours, colnum) == FAIL) { 
          fprintf(stderr, "Error in xEulerSweep.  k = %d\n", k); 
          ENZO_FAIL(""); 
     } 
 } // ENDFOR k 

 // Update in y-direction 
 for (i = 0; i < GridDimension[0]; i++) { 
      if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes, 
                              GridGlobalStart, CellWidthTemp, GravityOn, 
                              NumberOfColours, colnum) == FAIL) { 
       fprintf(stderr, "Error in yEulerSweep.  i = %d\n", i); 
       ENZO_FAIL(""); 
     } 
   } // ENDFOR i 



PPM: 1D hydro update: grid::xEulerSweep	

  Copy 2D slice out of cube 

  Compute pressure on slice (pgas2d) 

  Calculate diffusion/steepening coefficients (calcdiss) 

  Compute Left and Right states on each cell edge (inteuler) 

  Solve Reimann problem at each cell edge (twoshock) 

  Compute fluxes of conserved quantities at each cell edge 
(euler) 

  Save fluxes for future use 

  Return slice to cube 



PPM: reconstruction: inteuler	

  Piecewise parabolic representation: 

  Coefficients (Δq and q6) computed with mean q and qL, qR. 

  For smooth flow (like shown above), this is fine, but can cause a 
problem for discontinuities (e.g. shocks) 

  qL, qR are modified to ensure monotonicity (no new extrema) 

qR 

qL 

q 



PLM: reconstruction

• Piecewise linear method

• More diffusive reconstruction scheme, but 
more stable.



PPM: Godunov method: twoshock 

  To compute flux at cell boundary, take two initial constant 
states and then solve Riemann problem at interface 

  Given solution, can compute flux across boundary 

  Advantage: correctly satisfies jump conditions for shock 

rarefaction wave 

contact discontinuity 

shock 

left state right state 



PPM: Godunov method: inteuler, twoshock	

  For PPM, compute left and right states by averaging over 
characteristic region (causal region for time step Δt) 

  Average left and right regions become constant regions to 
be feed into Riemann solver (twoshock). 



Other Riemann solvers

• HLL: (Harten-Lax-Leer)

• HLLC: HLL but considering the contact 
wave



PPM: Eulerian corrections: euler	

  Eulerian case more complicated because cell edge is fixed.   

  Characteristic region for fixed cell more complicated: 

  Note that solution is not known ahead of time so two-step 
procedure is used (see Collela & Woodward 1984 for details)  

SUBSONIC CASE SUPERSONIC CASE 



Difficulty with very high Mach flows 

  PPM is flux conservative so natural variables are mass, 
momentum, total energy 

  Internal energy (e) computed from total energy (E): 

  Problem can arise in very high Mach flows when E >> e 

  e is difference between two large numbers 

  Not important for flow dynamics since p is negligible 

  But can cause problems if we want accurate temperatures 
since T α e 



Dual Energy Formalism: 
grid::ComputePresureDualEnergyFormalism 

  Solution:  Also evolve equation for internal energy: 

  Select energy to use depending on ratio e/E: 

  Select with DualEnergyFormalism = 1	

  Use when v/cs > ~20 

  Q: Why not just use e? 

  A: Equation for e is not in conservative form (source term). 

  Source term in internal energy equation causes diffusion 



Zeus Solver: grid::ZeusSolver	

  Traditional finite difference method  

  Artificial viscosity (see Stone & Norman 1992) 

  HydroMethod = 2	

  Source step: ZeusSource	

  Pressure (and gravity) update: 

  Artificial viscosity: 

  Compression heating: 



Zeus Solver: grid::ZeusSolver 

  Transport step: Zeus_xTransport	

  Note conservative form (transport part preserves mass) 

  Note vj+1 is face-centered so is really at cell-edge, but density 
needs to be interpolated.  Zeus uses an upwinded van Leer 
(linear) interpolation:   

  Similarly for momentum and energy (and y and z) 

  Zeus_yTransport, Zeus_zTransport 

e.g. 



Zeus Solver: grid::ZeusSolver 

  PPM is more accurate, slower but Zeus is faster and more 
robust. 

  PPM often fails (“dnu < 0” error) when fast cooling generates 
large density gradients. 

  Try out new hydro solvers in Enzo 2.0! 

  Implementation differences with PPM: 

  Internal energy equation only 

  In code, TotalEnergy field is really internal energy (ugh!) 

  Velocities are face-centered 

  BaryonField[Vel1Num][GINDEX(i,j,k)] really “lives” at i-1/2	



II. Block Structured AMR 



AMR: EvolveHierarchy	

  Root grid NxNxN, so Δx = DomainWidth/N 

  Level L defined so Δx = DomainWidth/(N2L) 

  Starting with level 0, grid advanced by Δt 

  Main loop of EvolveHierarchy looks (roughly) like this: 

  EvolveLevel does the heavy lifting 



Time Step: grid::ComputeTimeStep	

  Timestep on level L is minimum of constraints over all 
level L grids: 

  + others (e.g. MHD, FLD, etc.) 

CourantSafetyFactor	

ParticleCourantSafetyFactor	

MaximumExpansionFactor	



AMR: EvolveLevel	

  Levels advanced as follows: 

  Timesteps may not be integer ratios 

  (Diagram assumes Courant condition dominates and sound speed  is 
constant so: dt α Δx) 

  This algorithm is defined in EvolveLevel	



Advance grids on level: EvolveLevel	

  The logic of EvolveLevel is given (roughly) as: 

Already talked about this. 

Next, we’ll talk about these 

recursive 



BC’s: SetBoundaryConditions	

  Setting “ghost” zones around outside of domain 
  grid::SetExternalBoundaryValues	

  Choices: reflecting, outflow, inflow, periodic	

  Only applied to level 0 grids (except periodic) 

  Otherwise, two step procedure: 

  Interpolate ghost (boundary) zones from level L-1 grid 

  grid::InterpolateBoundaryFromParent 

  Linear interpolation in time (OldBaryonFields) 

  Spatial interpolation controlled by InterpolationMethod	

  SecondOrderA recommended, default (3D, linear in space, monotonic) 

  Copy ghost zones from sibling grids 

  grid::CheckForOverlap and grid::CopyZonesFromGrid	



Projection: grid::ProjectSolutionToParentGrid	

  Structured AMR produces redundancy:  

  coarse and fine grids cover same region 

  Need to restore consistency 

  Correct coarse cells once grids have all reach the same 
time: 



Flux Correction: 
grid::CorrectForRefinedFluxes	

  Mismatch of fluxes occurs around boundary of fine grids 

  Coarse cell just outside boundary used coarse fluxes but 
coarse cell inside used fine fluxes 

  Both fine and coarse fluxes saved 

   from hydro solver 

Uncorrected 
coarse value 

Coarse flux 
across boundary 

Sum of fine fluxes 
Over 4 (in 3D) 

abutting fine cells  



Rebuilding the Hierarchy: 
RebuildHierarchy	

  Need to check for cells needing more refinement 
Check for new grids on 
level 1 (and below) 

Check for new grids on 
Level 2 (and below) 

Check for new grids on 
Level 3 (and below) 



Refinement Criteria – grid::SetFlaggingField	

  Many ways to flag cells for refinement 

  CellFlaggingMethod = 	

  Then rectangular grids must be chosen to cover all 
flagged cells with minimum “waste” 

  Done with machine vision technique 

  Looks for edges (inflection points in number of flagged cells) 

  ProtoSubgrid class 



III. Gravity 



Self-Gravity (SelfGravity = 1) 

  Solve Poisson equation 
  PrepareDensityField	

  BaryonField[Density] copied to GravitatingMassField	

  Particle mass is deposited in 8 nearest cells (CIC) 

  Particle position advanced by ½ step 
  DepositParticleMassField	

  Root grid (level 0): 

  Potential solved with FFT 

  ComputePotentialFieldLevelZero	

  Potential differenced to get acceleration 
  grid::ComputeAccelerationField	



Self-Gravity 

  Subgrids: 

  Potential interpolated to boundary from parent 
  Grid::PreparePotentialField	

  Each subgrid then solves Poisson equation using multigrid 
  Grid::SolveForPotential	

  Note: this has two issues: 

  Interpolation errors on boundary can propagate to fine levels 

  Generally only an issue for steep potentials (point mass) 

  Ameliorated by having 6 ghost zones for gravity grid 

  Subgrids can have inconsistent potential gradients across boundary 

  Improved by copying new boundary conditions from sibilings and resolving 
the Poisson equation (PotentialIterations = 4 by default) 

  More accurate methods in development 



Other Gravitational sources – 

grid::ComputeAccelerationFieldExternal 

  Can also add fixed potential: 

  UniformGravity – constant field 

  PointSourceGravity – single point source 

  ExternalGravity – NFW profile 



IV. Particles 



N-body dynamics 

  Particles contribute mass to GravitatingMassField	

  Particles accelerated by AccelerationField	

  Interpolated from grid (from 8 nearest cells) 

  Particles advanced using leapfrog 

  grid::ComputeAccelerations	

  Particles stored in the locally most-refined grid 
  ParticlePosition, ParticleVelocity, ParticleMass	

  Tracer particles (massless) also available 



IV. Chemistry and Cooling 



Chemistry 

  Follows multiple species and solve rate equations 

  MultiSpecies = 1: H, H+, He, He+, He++, e- 

  MultiSpecies = 2: adds H2, H2+, H- 

  MultiSpecies = 3: adds D, D+ and HD 
  grid:SolveRateEquations	

  (or grid::SolveRateAndCoolEquations if RadiativeCooling > 0) 

  Rate equations solved using backwards differencing 
formula (BDF) with sub-cycles to prevent > 10% changes 

  Works well as long as chemical timescale not really short 



Radiative Cooling – 
grid::SolveRadiativeCooling	

  RadiativeCooling = 1	

  Two modes: 
  MultiSpecies = 0	

  Equilibrium cooling table (reads file cool_rates.in) 

  Sub-cycles so that De < 10% in one cooling step 
  MultiSpecies > 1	

  Computes cooling rate self-consistently from tracked-species 

  MetalCooling = 1: adds metal cooling from Glover & Jappsen (2007) 

  MetalCooling = 2: adds metal cooling from Raymond-Smith code 

  MetalCooling = 3: Cloudy Cooling table (Smith, Sigurdsson & Abel 
2008) 

  RadiationFieldType > 0 
  Add predefined radiative heating and ionization 


